Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping

Identifieur interne : 000234 ( Chine/Analysis ); précédent : 000233; suivant : 000235

Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping

Auteurs : RBID : Pascal:13-0143295

Descripteurs français

English descriptors

Abstract

A series of two component phosphorescent organic light-emitting diodes (PHOLEDs) combing the direct hole injection into dopant strategy with a gradient doping profile were demonstrated. The dopant, host, as well as molybdenum oxide (MoO3)-modified indium tin oxide (ITO) anode were investigated. It is found that the devices ITO/MoO3 (0 or 1 nm)/ fac-tris(2-phenylpyridine)iridium [Ir(ppy)3]:1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) (30 → 0 wt%, 105 nm)/LiF (1 nm)/Al (100 nm) show maximum external quantum efficiency (EQE) over 20%, which are comparable to multi-layered PHOLEDs. Moreover, the systematic variation of the host from TPBi to 4,7-diphenyl-1,10-phenanthroline (Bphen), dopant from Ir(ppy)3 to bis(2-phenylpyridine)(acetylacetonate)iridium [Ir(ppy)2(acac)], and anodes between ITO and ITO/MoO3 indicates that balancing the charge as well as controlling the charge recombination zone play critical roles in the design of highly efficient two component PHOLEDs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0143295

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping</title>
<author>
<name>ZHIWEI LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Toronto, 184 College St.</s1>
<s2>Toronto, Ontario M5S 3E4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3E4</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Helander, Michael G" uniqKey="Helander M">Michael G. Helander</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Toronto, 184 College St.</s1>
<s2>Toronto, Ontario M5S 3E4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3E4</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHIBIN WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Toronto, 184 College St.</s1>
<s2>Toronto, Ontario M5S 3E4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3E4</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHENGHONG LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Toronto, 184 College St.</s1>
<s2>Toronto, Ontario M5S 3E4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ontario M5S 3E4</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Yunnan University, 2 Cuihu Bei Lu</s1>
<s2>Kunming 650091</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Kunming 650091</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0143295</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0143295 INIST</idno>
<idno type="RBID">Pascal:13-0143295</idno>
<idno type="wicri:Area/Main/Corpus">000F80</idno>
<idno type="wicri:Area/Main/Repository">000B84</idno>
<idno type="wicri:Area/Chine/Extraction">000234</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylacetone derivatives</term>
<term>Anode</term>
<term>Balancing</term>
<term>Benzene</term>
<term>Charge carrier injection</term>
<term>Charge carrier recombination</term>
<term>Direct method</term>
<term>Doped materials</term>
<term>Doping</term>
<term>Doping profile</term>
<term>Hole</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Iridium</term>
<term>Iridium complex</term>
<term>Lithium fluoride</term>
<term>Molybdenum</term>
<term>Molybdenum oxide</term>
<term>Multiple layer</term>
<term>Organic electronics</term>
<term>Organic light emitting diodes</term>
<term>Phenanthrolines</term>
<term>Phosphorescence</term>
<term>Pyridine derivatives</term>
<term>Quantum yield</term>
<term>Tin addition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diode électroluminescente organique</term>
<term>Phosphorescence</term>
<term>Méthode directe</term>
<term>Trou</term>
<term>Injection porteur charge</term>
<term>Dopage</term>
<term>Profil dopage</term>
<term>Addition étain</term>
<term>Couche ITO</term>
<term>Rendement quantique</term>
<term>Equilibrage</term>
<term>Recombinaison porteur charge</term>
<term>Molybdène</term>
<term>Oxyde de molybdène</term>
<term>Oxyde d'indium</term>
<term>Anode</term>
<term>Dérivé de la pyridine</term>
<term>Iridium</term>
<term>Complexe d'iridium</term>
<term>Benzène</term>
<term>Fluorure de lithium</term>
<term>Multicouche</term>
<term>Phénanthroline</term>
<term>Dérivé de l'acétylacétone</term>
<term>Electronique organique</term>
<term>Matériau dopé</term>
<term>8560J</term>
<term>MoO3</term>
<term>ITO</term>
<term>LiF</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Molybdène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A series of two component phosphorescent organic light-emitting diodes (PHOLEDs) combing the direct hole injection into dopant strategy with a gradient doping profile were demonstrated. The dopant, host, as well as molybdenum oxide (MoO
<sub>3</sub>
)-modified indium tin oxide (ITO) anode were investigated. It is found that the devices ITO/MoO
<sub>3</sub>
(0 or 1 nm)/ fac-tris(2-phenylpyridine)iridium [Ir(ppy)
<sub>3</sub>
]:1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) (30 → 0 wt%, 105 nm)/LiF (1 nm)/Al (100 nm) show maximum external quantum efficiency (EQE) over 20%, which are comparable to multi-layered PHOLEDs. Moreover, the systematic variation of the host from TPBi to 4,7-diphenyl-1,10-phenanthroline (Bphen), dopant from Ir(ppy)
<sub>3</sub>
to bis(2-phenylpyridine)(acetylacetonate)iridium [Ir(ppy)
<sub>2</sub>
(acac)], and anodes between ITO and ITO/MoO
<sub>3</sub>
indicates that balancing the charge as well as controlling the charge recombination zone play critical roles in the design of highly efficient two component PHOLEDs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHIWEI LIU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HELANDER (Michael G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHIBIN WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHENGHONG LU</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Toronto, 184 College St.</s1>
<s2>Toronto, Ontario M5S 3E4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Yunnan University, 2 Cuihu Bei Lu</s1>
<s2>Kunming 650091</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>852-857</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000500610690210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0143295</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A series of two component phosphorescent organic light-emitting diodes (PHOLEDs) combing the direct hole injection into dopant strategy with a gradient doping profile were demonstrated. The dopant, host, as well as molybdenum oxide (MoO
<sub>3</sub>
)-modified indium tin oxide (ITO) anode were investigated. It is found that the devices ITO/MoO
<sub>3</sub>
(0 or 1 nm)/ fac-tris(2-phenylpyridine)iridium [Ir(ppy)
<sub>3</sub>
]:1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) (30 → 0 wt%, 105 nm)/LiF (1 nm)/Al (100 nm) show maximum external quantum efficiency (EQE) over 20%, which are comparable to multi-layered PHOLEDs. Moreover, the systematic variation of the host from TPBi to 4,7-diphenyl-1,10-phenanthroline (Bphen), dopant from Ir(ppy)
<sub>3</sub>
to bis(2-phenylpyridine)(acetylacetonate)iridium [Ir(ppy)
<sub>2</sub>
(acac)], and anodes between ITO and ITO/MoO
<sub>3</sub>
indicates that balancing the charge as well as controlling the charge recombination zone play critical roles in the design of highly efficient two component PHOLEDs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Diode électroluminescente organique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Organic light emitting diodes</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Phosphorescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Phosphorescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fosforescencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Méthode directe</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Direct method</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Método directo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Trou</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Hole</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hoyo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Doping</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Doping</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Profil dopage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Doping profile</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Perfil doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Equilibrage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Balancing</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Equilibrado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde de molybdène</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Molybdenum oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Molibdeno óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Anode</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Anode</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Dérivé de la pyridine</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Pyridine derivatives</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Piridina derivado</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Iridium</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Iridium</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Iridio</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Complexe d'iridium</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Iridium complex</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Iridio complejo</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Benzène</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Benzene</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Benceno</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Fluorure de lithium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Lithium fluoride</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Litio fluoruro</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Phénanthroline</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Phenanthrolines</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Dérivé de l'acétylacétone</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Acetylacetone derivatives</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Acetilacetona derivado</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Electronique organique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Organic electronics</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Electrónica orgánica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>MoO3</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>LiF</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>13</s5>
</fC07>
<fN21>
<s1>119</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000234 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000234 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0143295
   |texte=   Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024